def filter(self, kpt1, feat1, kpt2, feat2):
kpt1 = np.array([(k.pt[0],k.pt[1]) for k in kpt1])
kpt2 = np.array([(k.pt[0],k.pt[1]) for k in kpt2])
self.normalrize(kpt1), self.normalrize(kpt2)
idx = self.match(feat1, feat2)
if self.dim == 0:
return idx, np.ones(len(idx), dtype=np.bool), 1
mask = []
for i1, i2 in idx:
v1 = np.mat(kpt1[i1])
v2 = np.mat(kpt2[i2])
if self.test(v1, v2):
self.accept(v1.T,v2.T)
mask.append(True)
else: mask.append(False)
mask = np.array(mask)
#print mask
return idx, mask, self.V
评论列表
文章目录