def load_iros15(folder=IROS15_BASE_FOLDER, resolution=15, legs='all', part_proportions=(.7, .2), one_hot=True,
shuffle=True):
resolutions = (5, 11, 15)
legs_names = ('LF', 'LH', 'RF', 'RH')
assert resolution in resolutions
folder += str(resolution)
if legs == 'all': legs = legs_names
base_name_by_leg = lambda leg: os.path.join(folder, 'trainingSet%sx%sFromSensor%s.mat'
% (resolution, resolution, leg))
datasets = {}
for _leg in legs:
dat = scio.loadmat(base_name_by_leg(_leg))
data, target = dat['X'], to_one_hot_enc(dat['Y']) if one_hot else dat['Y']
# maybe pre-processing??? or it is already done? ask...
datasets[_leg] = Datasets.from_list(
redivide_data([Dataset(data, target, info={'leg': _leg})],
partition_proportions=part_proportions, shuffle=shuffle))
return datasets
评论列表
文章目录