def safe_mask(x, mask):
"""Return a mask which is safe to use on X.
Parameters
----------
X : {array-like, sparse matrix}
Data on which to apply mask.
mask : array
Mask to be used on X.
Returns
-------
mask
"""
mask = np.asarray(mask)
if np.issubdtype(mask.dtype, np.int) or np.issubdtype(mask.dtype, np.bool):
if x.shape[1] != len(mask):
raise ValueError("X columns %d != mask length %d"
% (x.shape[1], len(mask)))
# I don't see utility in here
# if hasattr(x, "toarray"):
# ind = np.arange(mask.shape[0])
# mask = ind[mask]
#
return mask
评论列表
文章目录