def eval_numerical_gradient_blobs(f, inputs, output, h=1e-5):
'''
Compute numeric gradients for a function that operates on input
and output blobs.
We assume that f accepts several input blobs as arguments, followed by a blob
into which outputs will be written. For example, f might be called like this:
f(x, w, out)
where x and w are input Blobs, and the result of f will be written to out.
Inputs:
- f: function
- inputs: tuple of input blobs
- output: output blob
- h: step size
'''
numeric_diffs = []
for input_blob in inputs:
diff = np.zeros_like(input_blob.diffs)
it = np.nditer(input_blob.vals, flags=['multi_index'],
op_flags=['readwrite'])
while not it.finished:
idx = it.multi_index
orig = input_blob.vals[idx]
input_blob.vals[idx] = orig + h
f(*(inputs + (output,)))
pos = np.copy(output.vals)
input_blob.vals[idx] = orig - h
f(*(inputs + (output,)))
neg = np.copy(output.vals)
input_blob.vals[idx] = orig
diff[idx] = np.sum((pos - neg) * output.diffs) / (2.0 * h)
it.iternext()
numeric_diffs.append(diff)
return numeric_diffs
评论列表
文章目录