def evaluate_recall(self, candidate_boxes, ar_thresh=0.5):
# Record max overlap value for each gt box
# Return vector of overlap values
gt_overlaps = np.zeros(0)
for i in xrange(self.num_images):
gt_inds = np.where(self.roidb[i]['gt_classes'] > 0)[0]
gt_boxes = self.roidb[i]['boxes'][gt_inds, :]
boxes = candidate_boxes[i]
if boxes.shape[0] == 0:
continue
overlaps = bbox_overlaps(boxes.astype(np.float),
gt_boxes.astype(np.float))
# gt_overlaps = np.hstack((gt_overlaps, overlaps.max(axis=0)))
_gt_overlaps = np.zeros((gt_boxes.shape[0]))
for j in xrange(gt_boxes.shape[0]):
argmax_overlaps = overlaps.argmax(axis=0)
max_overlaps = overlaps.max(axis=0)
gt_ind = max_overlaps.argmax()
gt_ovr = max_overlaps.max()
assert(gt_ovr >= 0)
box_ind = argmax_overlaps[gt_ind]
_gt_overlaps[j] = overlaps[box_ind, gt_ind]
assert(_gt_overlaps[j] == gt_ovr)
overlaps[box_ind, :] = -1
overlaps[:, gt_ind] = -1
gt_overlaps = np.hstack((gt_overlaps, _gt_overlaps))
num_pos = gt_overlaps.size
gt_overlaps = np.sort(gt_overlaps)
step = 0.001
thresholds = np.minimum(np.arange(0.5, 1.0 + step, step), 1.0)
recalls = np.zeros_like(thresholds)
for i, t in enumerate(thresholds):
recalls[i] = (gt_overlaps >= t).sum() / float(num_pos)
ar = 2 * np.trapz(recalls, thresholds)
return ar, gt_overlaps, recalls, thresholds
imdb2.py 文件源码
python
阅读 30
收藏 0
点赞 0
评论 0
评论列表
文章目录