def transform(self, y):
"""Transform labels to normalized encoding.
Parameters
----------
y : array-like of shape [n_samples]
Target values.
Returns
-------
y : array-like of shape [n_samples]
"""
check_is_fitted(self, 'classes_')
y = column_or_1d(y.ravel(), warn=True)
classes = np.unique(y)
if isinstance(classes[0], np.float64):
classes = classes[np.isfinite(classes)]
_check_numpy_unicode_bug(classes)
if len(np.intersect1d(classes, self.classes_)) < len(classes):
diff = np.setdiff1d(classes, self.classes_)
print(self.classes_)
raise ValueError("y contains new labels: %s" % str(diff))
return np.searchsorted(self.classes_, y).reshape(-1, 1)
评论列表
文章目录