metrics.py 文件源码

python
阅读 39 收藏 0 点赞 0 评论 0

项目:GraphTime 作者: GlooperLabs 项目源码 文件源码
def global_f_score(Theta_true, Theta_est, beta=1, eps=1e-6):
    """In line with `global_precision` and `global_recall`, compute the
    global f score given true and estimated graphical structures. The
    f score has the only parameter beta.

    Parameters
    ----------
    Theta_true : 3D ndarray, shape (timesteps, n_vertices, n_vertices)
    Theta_est : 3D ndarray, shape (timesteps, n_vertices, n_vertices)
    beta : float (default 1)
        beta value of the F score to be computed
    eps : float
    per_ts : bool
        whether to compute average or per timestep recall

    Returns
    -------
    float f-beta score
    """
    assert Theta_est.shape == Theta_true.shape
    d = Theta_true.shape[1]
    n = len(Theta_est)
    tps = fps = fns = tns = 0
    for i in range(n):
        est_edges = set(get_edges(Theta_est[i], eps))
        gt_edges = set(get_edges(Theta_true[i], eps))
        n_joint = len(est_edges.intersection(gt_edges))
        tps += n_joint
        fps += len(est_edges) - n_joint
        fns += len(gt_edges) - n_joint
        tns += d**2 - d - tps - fps - fns
    nom = (1 + beta**2) * tps
    denom = nom + beta**2 * fns + fps
    with np.errstate(divide='ignore', invalid='ignore'):
        f = np.nan_to_num(np.true_divide(nom, denom))
        return f
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号