def get_score(self, algo_result, gt, scene, with_visualization=False):
diffs = np.abs(algo_result - gt) * self.factor
mask = self.get_evaluation_mask(scene) * misc.get_mask_valid(diffs) * misc.get_mask_valid(algo_result)
sorted_diffs = np.sort(diffs[mask])
idx = np.size(sorted_diffs) * self.percentage / 100.
score = sorted_diffs[int(idx)]
if not with_visualization:
return score
with np.errstate(invalid="ignore"):
m_bad_pix = np.abs(diffs) > score
vis = np.abs(diffs)
vis[m_bad_pix] = -1
vis = np.ma.masked_array(vis, mask=~mask)
return score, vis
general_metrics.py 文件源码
python
阅读 25
收藏 0
点赞 0
评论 0
评论列表
文章目录