test_t_sne.py 文件源码

python
阅读 46 收藏 0 点赞 0 评论 0

项目:Parallel-SGD 作者: angadgill 项目源码 文件源码
def test_gradient():
    # Test gradient of Kullback-Leibler divergence.
    random_state = check_random_state(0)

    n_samples = 50
    n_features = 2
    n_components = 2
    alpha = 1.0

    distances = random_state.randn(n_samples, n_features).astype(np.float32)
    distances = distances.dot(distances.T)
    np.fill_diagonal(distances, 0.0)
    X_embedded = random_state.randn(n_samples, n_components)

    P = _joint_probabilities(distances, desired_perplexity=25.0,
                             verbose=0)
    fun = lambda params: _kl_divergence(params, P, alpha, n_samples,
                                        n_components)[0]
    grad = lambda params: _kl_divergence(params, P, alpha, n_samples,
                                         n_components)[1]
    assert_almost_equal(check_grad(fun, grad, X_embedded.ravel()), 0.0,
                        decimal=5)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号