def __init__(self, X_train, y_train, X_test, y_test, categorical=True):
self._x_train = X_train
self._x_test = X_test
# are the targets to be made one hot vectors
if categorical:
self._y_train = np_utils.to_categorical(y_train)
self._y_test = np_utils.to_categorical(y_test)
self._output_size = self._y_train.shape[1]
# handle sparse output classification
elif issubclass(y_train.dtype.type, np.integer):
self._y_train = y_train
self._y_test = y_test
self._output_size = self._y_train.max() + 1 # assume 0 based indexes
# not classification, just copy them
else:
self._y_train = y_train
self._y_test = y_test
self._output_size = self._y_train.shape[1]
评论列表
文章目录