def run_semi_online_v2(sess,
out_ops,
skips_noisy_batch,
indices,
inputs_noisy,
num_samples):
skips_noisy_sum = sess.run(skips_noisy_batch)
predictions_ = []
for step in xrange(num_samples):
feed_dict = feed_dict={self.inputs_clean: indices,
self.skips_noisy: skips_noisy_sum[:,:,step]}
output_dist = sess.run([out_ops], feed_dict=feed_dict)[0]
#output dim = 1 x 256, it is 2D but we need 1D input to argmax
indices = random_bins(NUM_CLASSES, output_dist)
inputs = self.bins[indices]
#inputs = np.array(np.matmul(output_dist,self.bins), dtype=np.float32)[:,None]
#indices = np.digitize(inputs[:,0], self.bins, right=False)[:,None]
predictions_.append(inputs)
评论列表
文章目录