markov_model.py 文件源码

python
阅读 30 收藏 0 点赞 0 评论 0

项目:sequence-based-recommendations 作者: rdevooght 项目源码 文件源码
def top_k_recommendations(self, sequence, k=10, exclude=None, **kwargs):
        if exclude is None:
            exclude = []

        last_item = int(sequence[-1][0])
        if last_item not in self.previous_recommendations:
            self.get_all_recommendations(last_item)

        all_recommendations = deepcopy(self.previous_recommendations[last_item])
        for s in sequence:
            all_recommendations[int(s[0])] = 0
        for i in exclude:
            all_recommendations[i] = 0

        ranking = np.zeros(self.n_items)
        for i, x in enumerate(all_recommendations.most_common(k)):
            ranking[x[0]] = k-i
        return np.argpartition(-ranking, range(k))[:k]
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号