def quadratic_loss(covariance, precision):
"""Computes ...
Parameters
----------
covariance : 2D ndarray (n_features, n_features)
Maximum Likelihood Estimator of covariance
precision : 2D ndarray (n_features, n_features)
The precision matrix of the model to be tested
Returns
-------
Quadratic loss
"""
assert covariance.shape == precision.shape
dim, _ = precision.shape
return np.trace((np.dot(covariance, precision) - np.eye(dim))**2)
评论列表
文章目录