def get_neg_log_post(Phi, sigma_J_list, ROI_list, G, MMT, q, Sigma_E, GL,
nu, V, prior_on = False):
eps = 1E-13
p = Phi.shape[0]
n_ROI = len(sigma_J_list)
Qu = Phi.dot(Phi.T)
G_Sigma_G = np.zeros(MMT.shape)
for i in range(n_ROI):
G_Sigma_G += sigma_J_list[i]**2 * np.dot(G[:,ROI_list[i]], G[:,ROI_list[i]].T)
cov = Sigma_E + G_Sigma_G + GL.dot(Qu).dot(GL.T)
inv_cov = np.linalg.inv(cov)
eigs = np.real(np.linalg.eigvals(cov)) + eps
log_det_cov = np.sum(np.log(eigs))
result = q*log_det_cov + np.trace(MMT.dot(inv_cov))
if prior_on:
inv_Q = np.linalg.inv(Qu)
#det_Q = np.linalg.det(Qu)
log_det_Q = np.sum(np.log(np.diag(Phi)**2))
result = result + np.float(nu+p+1)*log_det_Q+ np.trace(V.dot(inv_Q))
return result
#==============================================================================
# update both Qu and Sigma_J, gradient of Qu and Sigma J
评论列表
文章目录