def normalize_data(self, values):
normalized_values = copy.deepcopy(values)
data = np.array(values, dtype=float)[:, 0:5]
data_min = np.nanmin(data, 0)
data_max = np.nanmax(data, 0)
print data_min
print data_max
for i in range(len(values)):
for j in range(5):
normalized_values[i][j] = np.abs(values[i][j] - data_min[j]) / np.abs(data_max[j] - data_min[j])
return normalized_values, data_min, data_max
评论列表
文章目录