def _test_covariance_visual(self):
cov = self.sc.covariance
cov.epsilon = .02
cov.subsampling = 10
# l = self.sc.quadtree.leaves[0]
d = []
d.append(('Full', cov._calcCovarianceMatrix(method='full',
nthreads=0)))
d.append(('Focal', cov._calcCovarianceMatrix(method='focal')))
fig, _ = plt.subplots(1, len(d))
for i, (title, mat) in enumerate(d):
print '%s Max %f' % (title, num.nanmax(mat)), mat.shape
fig.axes[i].imshow(mat)
fig.axes[i].set_title(title)
plt.show()
评论列表
文章目录