def test_1d_w_missing(self):
# Test corrcoef 1 1D variable w/missing values
x = self.data
x[-1] = masked
x -= x.mean()
nx = x.compressed()
assert_almost_equal(np.corrcoef(nx), corrcoef(x))
assert_almost_equal(np.corrcoef(nx, rowvar=False),
corrcoef(x, rowvar=False))
with catch_warn_mae():
warnings.simplefilter("ignore")
assert_almost_equal(np.corrcoef(nx, rowvar=False, bias=True),
corrcoef(x, rowvar=False, bias=True))
try:
corrcoef(x, allow_masked=False)
except ValueError:
pass
# 2 1D variables w/ missing values
nx = x[1:-1]
assert_almost_equal(np.corrcoef(nx, nx[::-1]), corrcoef(x, x[::-1]))
assert_almost_equal(np.corrcoef(nx, nx[::-1], rowvar=False),
corrcoef(x, x[::-1], rowvar=False))
with catch_warn_mae():
warnings.simplefilter("ignore")
# ddof and bias have no or negligible effect on the function
assert_almost_equal(np.corrcoef(nx, nx[::-1]),
corrcoef(x, x[::-1], bias=1))
assert_almost_equal(np.corrcoef(nx, nx[::-1]),
corrcoef(x, x[::-1], ddof=2))
评论列表
文章目录