def testLocallyWeightedRegression():
datasArr, valuessArr = loadDataSet('datasets/ex0.txt')
m = np.shape(datasArr)[0]
predictValues = np.zeros(m)
for i in range(0, m):
predictValues[i] = \
locallyWeightedRegression(datasArr[i], datasArr, valuessArr, 0.01)
# ??????
xMat = np.matrix(datasArr)
valueMat = np.matrix(valuessArr)
plt.figure(figsize=(10, 10), facecolor="white")
plt.subplot(111)
plt.scatter(xMat[:, 1].flatten().A[0], valueMat.T.flatten().A[0])
# ???????
# ??????????
sortedIndexs = xMat[:, 1].argsort(0)
print "sortedIndexs:"
print sortedIndexs
sortedMat = xMat[sortedIndexs.flatten().A[0]]
plt.plot(sortedMat[:, 1], predictValues[sortedIndexs], c='red', linewidth=2)
plt.show()
# ?????????????
correlationCoefficients = np.corrcoef(predictValues, valueMat)
print "?????", correlationCoefficients
testRegression.py 文件源码
python
阅读 41
收藏 0
点赞 0
评论 0
评论列表
文章目录