def preprocessing_train_data(paras, df, LabelColumnName, ticker, train_tickers_dict, one_hot_label_proc, array_format=True):
day_list=train_tickers_dict[ticker]
index_df=np.vectorize(lambda s: s.strftime('%Y-%m-%d'))(df.index.to_pydatetime())
df.index=index_df
common_day=list(set(day_list).intersection(set(index_df)))
df=df.loc[common_day]
X = df.drop(LabelColumnName, 1)
y = np.array(df[LabelColumnName])
#print(X.head())
# print("ticker", ticker)
# print(X)
if one_hot_label_proc == True:
# generate one hot output
y_normalized_T = one_hot_processing(y, paras.n_out_class)
else:
y_normalized_T = y.astype(int) # np.repeat(float('nan'), len(y))
if array_format: return X.values, y_normalized_T
return X, y_normalized_T
Stock_Prediction_Data_Processing.py 文件源码
python
阅读 28
收藏 0
点赞 0
评论 0
评论列表
文章目录