def fit_dimensions(self, data, fit_TTmax = True):
"""
if fit_max is True, use blade length profile to adjust dHS_max
"""
if (fit_TTmax and 'L_blade' in data.columns):
dat = data.dropna(subset=['L_blade'])
xn = self.xn(dat['rank'])
fit = numpy.polyfit(xn,dat['L_blade'],7)
x = numpy.linspace(min(xn), max(xn), 500)
y = numpy.polyval(fit,x)
self.xnmax = x[numpy.argmax(y)]
self.TTmax = self.TTxn(self.xnmax)
self.scale = {k: numpy.mean(data[k] / self.predict(k,data['rank'], data['nff'])) for k in data.columns if k in self.ref.columns}
return self.scale
评论列表
文章目录