def preprocess_image(self, im_data: np.ndarray) -> np.ndarray:
# mean = np.mean(im_data, axis=(0, 1))
# std = np.std(im_data, axis=(0, 1))
std = np.array([
62.00827863, 46.65453694, 24.7612776, 54.50255552,
13.48645938, 24.76103598, 46.52145521, 62.36207267,
61.54443128, 59.2848377, 85.72930307, 68.62678882,
448.43441827, 634.79572682, 567.21509273, 523.10079804,
530.42441592, 461.8304455, 486.95994727, 478.63768386],
dtype=np.float32)
mean = np.array([
413.62140162, 459.99189475, 325.6722122, 502.57730746,
294.6884949, 325.82117752, 460.0356966, 482.39001004,
413.79388678, 527.57681818, 678.22878001, 529.64198655,
4243.25847972, 4473.47956815, 4178.84648439, 3708.16482918,
2887.49330138, 2589.61786722, 2525.53347208, 2417.23798598],
dtype=np.float32)
scaled = ((im_data - mean) / std).astype(np.float16)
return scaled.transpose([2, 0, 1]) # torch order
评论列表
文章目录