def gaussianFilter(data, sigma):
"""
Drop-in replacement for scipy.ndimage.gaussian_filter.
(note: results are only approximately equal to the output of
gaussian_filter)
"""
if np.isscalar(sigma):
sigma = (sigma,) * data.ndim
baseline = data.mean()
filtered = data - baseline
for ax in range(data.ndim):
s = sigma[ax]
if s == 0:
continue
# generate 1D gaussian kernel
ksize = int(s * 6)
x = np.arange(-ksize, ksize)
kernel = np.exp(-x**2 / (2*s**2))
kshape = [1,] * data.ndim
kshape[ax] = len(kernel)
kernel = kernel.reshape(kshape)
# convolve as product of FFTs
shape = data.shape[ax] + ksize
scale = 1.0 / (abs(s) * (2*np.pi)**0.5)
filtered = scale * np.fft.irfft(np.fft.rfft(filtered, shape, axis=ax) *
np.fft.rfft(kernel, shape, axis=ax),
axis=ax)
# clip off extra data
sl = [slice(None)] * data.ndim
sl[ax] = slice(filtered.shape[ax]-data.shape[ax],None,None)
filtered = filtered[sl]
return filtered + baseline
评论列表
文章目录