acer.py 文件源码

python
阅读 27 收藏 0 点赞 0 评论 0

项目:chainerrl 作者: chainer 项目源码 文件源码
def compute_policy_gradient_full_correction(
        action_distrib, action_distrib_mu, action_value, v,
        truncation_threshold):
    """Compute off-policy bias correction term wrt all actions."""
    assert truncation_threshold is not None
    assert np.isscalar(v)
    with chainer.no_backprop_mode():
        rho_all_inv = compute_full_importance(action_distrib_mu,
                                              action_distrib)
        correction_weight = (
            np.maximum(1 - truncation_threshold * rho_all_inv,
                       np.zeros_like(rho_all_inv)) *
            action_distrib.all_prob.data[0])
        correction_advantage = action_value.q_values.data[0] - v
    return -F.sum(correction_weight *
                  action_distrib.all_log_prob *
                  correction_advantage, axis=1)
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号