def perf_pi_continuous(self, x):
# Use history length 1 (Schreiber k=1), kernel width of 0.5 normalised units
# learnerReward.piCalcC.initialise(40, 1, 0.5);
# learnerReward.piCalcC.initialise(1, 1, 0.5);
# src = np.atleast_2d(x[0:-1]).T # start to end - 1
# dst = np.atleast_2d(x[1:]).T # 1 to end
# learnerReward.piCalcC.setObservations(src, dst)
# print "perf_pi_continuous", x
# learnerReward.piCalcC.initialise(100, 1);
# learnerReward.piCalcC.initialise(50, 1);
learnerReward.piCalcC.initialise(10, 1);
# src = np.atleast_2d(x).T # start to end - 1
# learnerReward.piCalcC.setObservations(src.reshape((src.shape[0],)))
# print "x", x.shape
learnerReward.piCalcC.setObservations(x)
# print type(src), type(dst)
# print src.shape, dst.shape
return learnerReward.piCalcC.computeAverageLocalOfObservations()# * -1
评论列表
文章目录