functional.py 文件源码

python
阅读 31 收藏 0 点赞 0 评论 0

项目:mriqc 作者: poldracklab 项目源码 文件源码
def find_spikes(data, spike_thresh):
    data -= np.median(np.median(np.median(data, axis=0), axis=0), axis=0)
    slice_mean = np.median(np.median(data, axis=0), axis=0)
    t_z = _robust_zscore(slice_mean)
    spikes = np.abs(t_z) > spike_thresh
    spike_inds = np.transpose(spikes.nonzero())
    # mask out the spikes and recompute z-scores using variance uncontaminated with spikes.
    # This will catch smaller spikes that may have been swamped by big
    # ones.
    data.mask[:, :, spike_inds[:, 0], spike_inds[:, 1]] = True
    slice_mean2 = np.median(np.median(data, axis=0), axis=0)
    t_z = _robust_zscore(slice_mean2)

    spikes = np.logical_or(spikes, np.abs(t_z) > spike_thresh)
    spike_inds = [tuple(i) for i in np.transpose(spikes.nonzero())]
    return spike_inds, t_z
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号