def get_arg_best(self):
best_idx = -1
best_value = sys.maxint
for i, trial in enumerate(self.trials):
tmp_res = np.NaN
if np.isfinite(trial['result']):
tmp_res = trial['result']
elif np.isfinite(trial['instance_results']).any():
tmp_res = wrapping_util.nan_mean(trial['instance_results'])
# np.nanmean is not available in older numpy versions
# tmp_res = scipy.nanmean(trial['instance_results'])
else:
continue
if tmp_res < best_value:
best_idx = i
best_value = tmp_res
if best_idx == -1:
raise ValueError("No best value found.")
return best_idx
# Get the best value so far, for more documentation see get_arg_best
评论列表
文章目录