def getValidationResults(self, results_dict):
self.classifier.trainUntilConverged()
results_dict['num_clusters'] = self.classifier.K
if self.users_as_tasks:
val_acc, val_auc = self.getAccuracyAucOnAllTasks(self.val_tasks)
results_dict['val_acc'] = val_acc
results_dict['val_auc'] = val_auc
else:
accs = []
aucs = []
for t in range(self.n_tasks):
acc, auc = self.getAccuracyAucOnOneTask(self.val_tasks, t)
task_name = self.val_tasks[t]['Name']
results_dict['TaskAcc-' + helper.getFriendlyLabelName(task_name)] = acc
results_dict['TaskAuc-' + helper.getFriendlyLabelName(task_name)] = auc
if task_name in self.optimize_labels:
accs.append(acc)
aucs.append(auc)
results_dict['val_acc'] = np.nanmean(accs)
results_dict['val_auc'] = np.nanmean(aucs)
return results_dict
HBLRWrapper.py 文件源码
python
阅读 32
收藏 0
点赞 0
评论 0
评论列表
文章目录