def getOverallResults(self, average_over_tasks=False):
if average_over_tasks:
accs = [0] * len(self.optimize_labels)
aucs = [0] * len(self.optimize_labels)
f1s = [0] * len(self.optimize_labels)
precisions = [0] * len(self.optimize_labels)
recalls = [0] * len(self.optimize_labels)
for i in range(len(self.optimize_labels)):
accs[i] = self.training_val_results_per_task['acc'][self.optimize_labels[i]][-1]
aucs[i] = self.training_val_results_per_task['auc'][self.optimize_labels[i]][-1]
f1s[i] = self.training_val_results_per_task['f1'][self.optimize_labels[i]][-1]
precisions[i] = self.training_val_results_per_task['precision'][self.optimize_labels[i]][-1]
recalls[i] = self.training_val_results_per_task['recall'][self.optimize_labels[i]][-1]
return np.nanmean(accs), np.nanmean(aucs), np.nanmean(f1s), np.nanmean(precisions), np.nanmean(recalls)
else:
acc = self.training_val_results['acc'][-1]
auc = self.training_val_results['auc'][-1]
f1 = self.training_val_results['f1'][-1]
precision = self.training_val_results['precision'][-1]
recall = self.training_val_results['recall'][-1]
return acc, auc, f1, precision, recall
tensorFlowNetworkMultiTask.py 文件源码
python
阅读 27
收藏 0
点赞 0
评论 0
评论列表
文章目录