def make_jsma(sess, env, X_data, epochs=0.2, eps=1.0, batch_size=128):
"""
Generate JSMA by running env.x_jsma.
"""
print('\nMaking adversarials via JSMA')
n_sample = X_data.shape[0]
n_batch = int((n_sample + batch_size - 1) / batch_size)
X_adv = np.empty_like(X_data)
for batch in range(n_batch):
print(' batch {0}/{1}'.format(batch + 1, n_batch), end='\r')
start = batch * batch_size
end = min(n_sample, start + batch_size)
feed_dict = {
env.x: X_data[start:end],
env.target: np.random.choice(n_classes),
env.adv_epochs: epochs,
env.adv_eps: eps}
adv = sess.run(env.x_jsma, feed_dict=feed_dict)
X_adv[start:end] = adv
print()
return X_adv
jsma_mnist_10x10.py 文件源码
python
阅读 32
收藏 0
点赞 0
评论 0
评论列表
文章目录