def train():
for i in range(20000):
randomint = randint(0, 10000 - batchsize - 1)
trainingData = batch["data"][randomint:batchsize + randomint]
rawlabel = batch["labels"][randomint:batchsize + randomint]
trainingLabel = np.zeros((batchsize, 10))
trainingLabel[np.arange(batchsize), rawlabel] = 1
trainingData = trainingData / 255.0
trainingData = np.reshape(trainingData, [-1, 3, 32, 32])
trainingData = np.swapaxes(trainingData, 1, 3)
if i % 10 == 0:
train_accuracy = accuracy.eval(feed_dict={
img: validationData, lbl: validationLabel, keepProb: 1.0})
print("step %d, training accuracy %g" % (i, train_accuracy))
if i % 50 == 0:
saver.save(sess, os.getcwd() + "/training/train", global_step=i)
optimizer.run(feed_dict={img: trainingData, lbl: trainingLabel, keepProb: 0.5})
print(i)
评论列表
文章目录