def __init__(self, score_metric='log_likelihood', init_method='cov',
auto_scale=True):
self.score_metric = score_metric
self.init_method = init_method
self.auto_scale = auto_scale
self.covariance_ = None # assumes a matrix of a list of matrices
self.precision_ = None # assumes a matrix of a list of matrices
# these must be updated upon self.fit()
# the first 4 will be set if self.init_coefs is used.
# self.sample_covariance_
# self.lam_scale_
# self.n_samples
# self.n_features
self.is_fitted = False
super(InverseCovarianceEstimator, self).__init__()
评论列表
文章目录