def plotROC(auc_list,fpr_list,tpr_list):
mean_tpr = 0.0
mean_fpr = np.linspace(0,1,100)
plt.figure(figsize=(5,5))
for i in range(len(fpr_list)):
mean_tpr += np.interp(mean_fpr, fpr_list[i], tpr_list[i])
mean_tpr[0] = 0.0
plt.plot(fpr_list[i], tpr_list[i], lw=1, label='ROC fold %d (area = %0.2f)' % (i, auc_list[i]))
plt.plot([0, 1], [0, 1], '--', color=(0.6, 0.6, 0.6), label='Luck')
mean_tpr /= len(fpr_list)
mean_tpr[-1] = 1.0
mean_auc = auc(mean_fpr, mean_tpr)
plt.plot(mean_fpr, mean_tpr, 'k--', label='Mean ROC (area = %0.2f)' % mean_auc, lw=2)
plt.xlim([-0.05, 1.05])
plt.ylim([-0.05, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('')
plt.legend(loc="lower right")
plt.show()
return mean_auc, mean_fpr, mean_tpr
helperFuncs.py 文件源码
python
阅读 32
收藏 0
点赞 0
评论 0
评论列表
文章目录