def predict(self, x):
"""
Predict labels for provided features.
Using a piecewise linear function.
1) If x exactly matches a boundary then associated prediction
is returned. In case there are multiple predictions with the
same boundary then one of them is returned. Which one is
undefined (same as java.util.Arrays.binarySearch).
2) If x is lower or higher than all boundaries then first or
last prediction is returned respectively. In case there are
multiple predictions with the same boundary then the lowest
or highest is returned respectively.
3) If x falls between two values in boundary array then
prediction is treated as piecewise linear function and
interpolated value is returned. In case there are multiple
values with the same boundary then the same rules as in 2)
are used.
:param x:
Feature or RDD of Features to be labeled.
"""
if isinstance(x, RDD):
return x.map(lambda v: self.predict(v))
return np.interp(x, self.boundaries, self.predictions)
评论列表
文章目录