def MeanSquareError(self,y, y_hat):
'''Calculate the mean square error between the real value (y) and the predicted value (y_hat).'''
'''Return MSE = 1/N \sum^N_{i=1} (y-y_hat)^2.'''
dif = np.subtract(y, y_hat)
sum = np.mean(np.power(dif, 2), axis = 1)
mse = np.mean(sum)
return mse
评论列表
文章目录