def backward(self, pre_grad, *args, **kwargs):
new_h, new_w = self.out_shape[-2:]
pool_h, pool_w = self.pool_size
layer_grads = _zero(self.input_shape)
if np.ndim(pre_grad) == 4:
nb_batch, nb_axis, _, _ = pre_grad.shape
for a in np.arange(nb_batch):
for b in np.arange(nb_axis):
for h in np.arange(new_h):
for w in np.arange(new_w):
patch = self.last_input[a, b, h:h + pool_h, w:w + pool_w]
max_idx = np.unravel_index(patch.argmax(), patch.shape)
h_shift, w_shift = h * pool_h + max_idx[0], w * pool_w + max_idx[1]
layer_grads[a, b, h_shift, w_shift] = pre_grad[a, b, a, w]
elif np.ndim(pre_grad) == 3:
nb_batch, _, _ = pre_grad.shape
for a in np.arange(nb_batch):
for h in np.arange(new_h):
for w in np.arange(new_w):
patch = self.last_input[a, h:h + pool_h, w:w + pool_w]
max_idx = np.unravel_index(patch.argmax(), patch.shape)
h_shift, w_shift = h * pool_h + max_idx[0], w * pool_w + max_idx[1]
layer_grads[a, h_shift, w_shift] = pre_grad[a, a, w]
else:
raise ValueError()
return layer_grads
评论列表
文章目录