def grid_search_gamma(rbf_svm, X, y):
## grid search - gamma only
# use a full grid over all parameters
param_grid = {'gamma': np.logspace(-15, 4, num = 5000, base = 2.0)}
grid_search = GridSearchCV(rbf_svm, param_grid = param_grid, scoring = 'roc_auc',
cv = 10, pre_dispatch = '2*n_jobs', n_jobs = -1)
# re-fit on the whole training data
grid_search.fit(X, y)
grid_search_scores = [score[1] for score in grid_search.grid_scores_]
print('Best parameters : {}'.format(grid_search.best_params_))
print('Best score : {}'.format(grid_search.best_score_))
# set canvas
fig, ax = plt.subplots(1, 1)
# ax.scatter(X[:, 0], X[:, 1], c = y)
ax.plot(param_grid['gamma'], grid_search_scores)
ax.set_title('AUC = f(gamma, C = 1.0)', fontsize = 'large')
ax.set_xlabel('gamma', fontsize = 'medium')
ax.set_ylabel('AUC', fontsize = 'medium')
return fig
评论列表
文章目录