def test(args):
corpus = load_corpus(args.input)
vocab, docs = corpus['vocab'], corpus['docs']
n_vocab = len(vocab)
doc_keys = docs.keys()
X_docs = []
for k in doc_keys:
X_docs.append(vecnorm(doc2vec(docs[k], n_vocab), 'logmax1', 0))
del docs[k]
X_docs = np.r_[X_docs]
vae = load_vae_model(args.load_model)
doc_codes = vae.predict(X_docs)
dump_json(dict(zip(doc_keys, doc_codes.tolist())), args.output)
print 'Saved doc codes file to %s' % args.output
# if args.save_topics:
# topics = get_topics(vae, revdict(vocab), topn=10)
# write_file(topics, args.save_topics)
# print 'Saved topics file to %s' % args.save_topics
评论列表
文章目录