pspnet.py 文件源码

python
阅读 21 收藏 0 点赞 0 评论 0

项目:PSPNet-Keras-tensorflow 作者: Vladkryvoruchko 项目源码 文件源码
def predict(self, img, flip_evaluation):
        """
        Predict segementation for an image.

        Arguments:
            img: must be rowsxcolsx3
        """
        h_ori, w_ori = img.shape[:2]
        if img.shape[0:2] != self.input_shape:
            print("Input %s not fitting for network size %s, resizing. You may want to try sliding prediction for better results." % (img.shape[0:2], self.input_shape))
            img = misc.imresize(img, self.input_shape)
        input_data = self.preprocess_image(img)
        # utils.debug(self.model, input_data)

        regular_prediction = self.model.predict(input_data)[0]
        if flip_evaluation:
            print("Predict flipped")
            flipped_prediction = np.fliplr(self.model.predict(np.flip(input_data, axis=2))[0])
            prediction = (regular_prediction + flipped_prediction) / 2.0
        else:
            prediction = regular_prediction

        if img.shape[0:1] != self.input_shape:  # upscale prediction if necessary
            h, w = prediction.shape[:2]
            prediction = ndimage.zoom(prediction, (1.*h_ori/h, 1.*w_ori/w, 1.),
                                      order=1, prefilter=False)
        return prediction
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号