def _random_flip_lr(self, images, labels):
if(images.shape[0] != labels.shape[0]):
raise Exception("Batch size Error.")
rand_u = np.random.uniform(0.0, 1.0, images.shape[0])
rand_cond = rand_u > 0.5
o_images = np.zeros_like(images)
o_labels = np.zeros_like(labels)
for idx in xrange(images.shape[0]):
condition = rand_cond[idx]
if condition:
# "flip"
o_images[idx] = np.fliplr(images[idx])
o_labels[idx, ::2] = self.float_max - labels[idx, ::2]
o_labels[idx, 1::2] = labels[idx, 1::2]
else:
# "origin"
o_images[idx] = images[idx]
o_labels[idx] = labels[idx]
return o_images, o_labels
read_data.py 文件源码
python
阅读 43
收藏 0
点赞 0
评论 0
评论列表
文章目录