def preprocess_image(img):
means=[0.485, 0.456, 0.406]
stds=[0.229, 0.224, 0.225]
preprocessed_img = img.copy()[: , :, ::-1]
for i in range(3):
preprocessed_img[:, :, i] = preprocessed_img[:, :, i] - means[i]
preprocessed_img[:, :, i] = preprocessed_img[:, :, i] / stds[i]
preprocessed_img = \
np.ascontiguousarray(np.transpose(preprocessed_img, (2, 0, 1)))
if use_cuda:
preprocessed_img_tensor = torch.from_numpy(preprocessed_img).cuda()
else:
preprocessed_img_tensor = torch.from_numpy(preprocessed_img)
preprocessed_img_tensor.unsqueeze_(0)
return Variable(preprocessed_img_tensor, requires_grad = False)
评论列表
文章目录