sketch_rnn.py 文件源码

python
阅读 30 收藏 0 点赞 0 评论 0

项目:Pytorch-Sketch-RNN 作者: alexis-jacq 项目源码 文件源码
def forward(self, inputs, batch_size, hidden_cell=None):
        if hidden_cell is None:
            # then must init with zeros
            if use_cuda:
                hidden = Variable(torch.zeros(2, batch_size, hp.enc_hidden_size).cuda())
                cell = Variable(torch.zeros(2, batch_size, hp.enc_hidden_size).cuda())
            else:
                hidden = Variable(torch.zeros(2, batch_size, hp.enc_hidden_size))
                cell = Variable(torch.zeros(2, batch_size, hp.enc_hidden_size))
            hidden_cell = (hidden, cell)
        _, (hidden,cell) = self.lstm(inputs.float(), hidden_cell)
        # hidden is (2, batch_size, hidden_size), we want (batch_size, 2*hidden_size):
        hidden_forward, hidden_backward = torch.split(hidden,1,0)
        hidden_cat = torch.cat([hidden_forward.squeeze(0), hidden_backward.squeeze(0)],1)
        # mu and sigma:
        mu = self.fc_mu(hidden_cat)
        sigma_hat = self.fc_sigma(hidden_cat)
        sigma = torch.exp(sigma_hat/2.)
        # N ~ N(0,1)
        z_size = mu.size()
        if use_cuda:
            N = Variable(torch.normal(torch.zeros(z_size),torch.ones(z_size)).cuda())
        else:
            N = Variable(torch.normal(torch.zeros(z_size),torch.ones(z_size)))
        z = mu + sigma*N
        # mu and sigma_hat are needed for LKL loss
        return z, mu, sigma_hat
评论列表
文章目录


问题


面经


文章

微信
公众号

扫码关注公众号