def get_historical_data(self, num_periods=200):
gdax_client = gdax.PublicClient()
end = datetime.datetime.utcnow()
end_iso = end.isoformat()
start = end - datetime.timedelta(seconds=(self.period_size * num_periods))
start_iso = start.isoformat()
ret = gdax_client.get_product_historic_rates(self.product, granularity=self.period_size, start=start_iso, end=end_iso)
# Check if we got rate limited, which will return a JSON message
while not isinstance(ret, list):
time.sleep(3)
ret = gdax_client.get_product_historic_rates(self.product, granularity=self.period_size, start=start_iso, end=end_iso)
hist_data = np.array(ret, dtype='object')
for row in hist_data:
row[0] = datetime.datetime.fromtimestamp(row[0], pytz.utc)
return np.flipud(hist_data)
评论列表
文章目录