def bias_var(true_preds, sum_preds, counts, n_replicas):
'''
compute bias and variance
@param true_preds: true labels
@param sum_preds: array of summation of the predictions of each sample
@param counts: the times each sample is tested (predicted)
@return: squared bias, variance
'''
sample_bias = np.absolute(true_preds - sum_preds / counts)
sample_var = sample_bias * (1.0 - sample_bias)
weighted_sample_bias_2 = np.power(sample_bias, 2.0) * (counts / n_replicas)
weighted_sample_var = sample_var * (counts / n_replicas)
bias = np.mean(weighted_sample_bias_2)
var = np.mean(weighted_sample_var)
return bias, var
评论列表
文章目录