def build_classifier(labeled, unlabeled):
err = np.zeros(self.num_classifiers)
err_prime = np.zeros(self.num_classifiers)
s_prime = np.zeros(self.num_classifiers)
inbags = [None] * self.num_classifiers
np.random.seed(self.m_seed)
num_original_labeled_insts = labeled.shape[0]
# set up the random tree options
self.num_kvalue = self.num_features
if self.num_kvalue < 1:
self.num_kvalue = int(np.log2(labeled.shape[1])) + 1
self.estimator = self.estimator.set_params(**{"max_features": self.m_kvalue})
pass
评论列表
文章目录