def cosine_similarity_self(A):
similarity = np.dot(A, A.T)
square_mag = np.diag(similarity)
inv_square_mag = 1 / square_mag
inv_square_mag[np.isinf(inv_square_mag)] = 0
inv_mag = np.sqrt(inv_square_mag)
cosine = similarity * inv_mag
cosine = cosine.T * inv_mag
return cosine
# document should be a list of sentences
# method = "word2vec", "lda", "tfidf"
# def extraction(document, method="rawText"):
#
# # graph = build_graph(document, method) # document is a list of sentences
#
# calculated_page_rank = networkx.pagerank(graph, weight="weight")
#
# # most important sentences in descending order of importance
# sentences = sorted(calculated_page_rank, key=calculated_page_rank.get, reverse=False)
#
# return sentences[0:4]
评论列表
文章目录