def deriveKernel(self, params, i):
self.checkParamsI(params, i)
#find the relevant W
numSNPs = self.X_scaled.shape[1]
unitNum = i / numSNPs
weightNum = i % numSNPs
nnX_unitNum = self.applyNN(self.X_scaled, params, unitNum) / float(self.numUnits)
w_deriv_relu = self.X_scaled[:, weightNum].copy()
w_deriv_relu[nnX_unitNum <= 0] = 0
K_deriv1 = np.outer(nnX_unitNum, w_deriv_relu)
K_deriv = K_deriv1 + K_deriv1.T
return K_deriv
评论列表
文章目录