def cleanup(self,*args, **kwargs):
from theanompi.models.lstm import zipp, unzip, get_minibatches_idx, pred_error
if self.best_p is not None:
zipp(self.best_p, self.tparams)
else:
self.best_p = unzip(self.tparams)
self.use_noise.set_value(0.)
kf_train_sorted = get_minibatches_idx(len(self.train[0]), self.model_options['batch_size'])
train_err = pred_error(self.f_pred, self.prepare_data, self.train, kf_train_sorted)
valid_err = pred_error(self.f_pred, self.prepare_data, self.valid, kf_valid)
test_err = pred_error(self.f_pred, self.prepare_data, self.test, kf_test)
if self.rank==0: print( 'Train ', train_err, 'Valid ', valid_err, 'Test ', test_err )
if saveto:
numpy.savez(self.model_options['saveto'], train_err=train_err,
valid_err=valid_err, test_err=test_err,
history_errs=self.history_errs, **self.best_p)
# print('The code run for %d epochs, with %f sec/epochs' % (
# (self.eidx + 1), (end_time - start_time) / (1. * (self.eidx + 1))))
# print( ('Training took %.1fs' %
# (end_time - start_time)), file=sys.stderr)
lstm_theanompi_outdated.py 文件源码
python
阅读 31
收藏 0
点赞 0
评论 0
评论列表
文章目录