def run(self):
# read in vectors
loader = numpy.load(self.in_vectors().path)
instances = sparse.csr_matrix((loader['data'], loader['indices'], loader['indptr']), shape = loader['shape'])
num_dimensions = instances.shape[1]
# generate vectorpopulation
random_vectorpopulation = ga_functions.random_vectorpopulation(num_dimensions, self.population_size)
numpy.savez(self.out_vectorpopulation().path, data=random_vectorpopulation.data, indices=random_vectorpopulation.indices, indptr=random_vectorpopulation.indptr, shape=random_vectorpopulation.shape)
# read in parameter options
with open(self.in_parameter_options().path) as infile:
lines = infile.read().rstrip().split('\n')
parameter_options = [[i for i in range(len(line.split()))] for line in lines]
# generate parameterpopulation
random_parameterpopulation = ga_functions.random_parameterpopulation(parameter_options, self.population_size)
numpy.savez(self.out_parameterpopulation().path, data=random_parameterpopulation.data, indices=random_parameterpopulation.indices, indptr=random_parameterpopulation.indptr, shape=random_parameterpopulation.shape)
################################################################################
###GA Iterator
################################################################################
评论列表
文章目录