def summary(self):
""" Method to produce a summary table of of the Mack Chainladder
model.
Returns:
This calculation is consistent with the R calculation
BootChainLadder$summary
"""
IBNR = self.IBNR
tri = self.tri
summary = pd.DataFrame()
summary['Latest'] = tri.get_latest_diagonal()
summary['Mean Ultimate'] = summary['Latest'] + pd.Series([np.mean(np.array(IBNR)[:,num]) for num in range(len(tri.data))],index=summary.index)
summary['Mean IBNR'] = summary['Mean Ultimate'] - summary['Latest']
summary['SD IBNR'] = pd.Series([np.std(np.array(IBNR)[:,num]) for num in range(len(tri.data))],index=summary.index)
summary['IBNR 75%'] = pd.Series([np.percentile(np.array(IBNR)[:,num],q=75) for num in range(len(tri.data))],index=summary.index)
summary['IBNR 95%'] = pd.Series([np.percentile(np.array(IBNR)[:,num],q=95) for num in range(len(tri.data))],index=summary.index)
return summary
评论列表
文章目录