def computeCost(X, y, theta):
inner = np.power(((X * theta.T) - y), 2)
return np.sum(inner) / (2 * len(X))
#def gradientDescent(X, y, theta, alpha, iters):
# temp = np.matrix(np.zeros(theta.shape))
# params = int(theta.ravel().shape[1]) #flattens
# cost = np.zeros(iters)
#
# for i in range(iters):
# err = (X * theta.T) - y
#
# for j in range(params):
# term = np.multiply(err, X[:,j])
# temp[0, j] = theta[0, j] - ((alpha / len(X)) * np.sum(term))
#
# theta = temp
# cost[i] = computeCost(X, y, theta)
#
# return theta, cost
评论列表
文章目录